A Bi-directional Fuzzy C-Means Clustering Ensemble Algorithm Considering Local Information

نویسندگان

چکیده

Abstract The classic Fuzzy C-means (FCM) algorithm has limited clustering performance and is prone to misclassification of border points. This study offers a bi-directional FCM ensemble approach that takes local information into account (LI_BIFCM) overcome these challenges increase quality. First, various membership matrices are created after running multiple times, based on the randomization initial cluster centers, vertical performed using maximum principle. Second, each execution FCM, sample points K-nearest neighbors, horizontal performed. Multiple ensembles can be clustering. Finally, final results obtained by combining ensembles. Twelve data sets were chosen for testing from both synthetic real sources. LI_BIFCM outperformed four traditional algorithms three in experiments. Furthermore, weak correlation with parameters, indicating suggested technique robust.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

Fuzzy c-means clustering algorithm for directional data (FCM4DD)

Cluster analysis is a useful tool used commonly in data analysis. The purpose of cluster analysis is to separate data sets into subsets according to their similarities and dissimilarities. In this paper, the fuzzy c-means algorithm was adapted for directional data. In the literature, several methods have been used for the clustering of directional data. Due to the use of trigonometric functions...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

optimization of fuzzy clustering criteria by a hybrid pso and fuzzy c-means clustering algorithm

this paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (fpso) and fuzzy c-means (fcm) algorithms, to solve the fuzzyclustering problem, especially for large sizes. when the problem becomes large, thefcm algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. the pso algorithm does find ago...

متن کامل

FCM: THE FUZZY c-MEANS CLUSTERING ALGORITHM

nThis paper transmits a FORTRAN-IV coding of the fuzzy c-means (FCM) clustering program. The FCM program is applicable to a wide variety of geostatistical data analysis problems. This program generates fuzzy partitions and prototypes for any set of numerical data. These partitions are useful for corroborating known substructures or suggesting substructure in unexplored data. The clustering crit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Intelligence Systems

سال: 2021

ISSN: ['1875-6883', '1875-6891']

DOI: https://doi.org/10.1007/s44196-021-00014-z